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Stereoselective Synthesis of Tetrahydrofurans via the Palladium-Catalyzed
Reaction of Aryl Bromides with  p-Hydroxy Alkenes: Evidence for an Unusual
Intramolecular Olefin Insertion into a Pd(Ar)(OR) Intermediate
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The tetrahydrofuran moiety is a commonly occurring structural Table 1. Tetrahydrofuran Synthesis?
feature of a large number of biologically active natural products, “entry aicohol aryl bromide product vield (%)°
many of which contain substituents at the, -, and 5-positions OH

o
of the ringl2 Thus, there has been a long-standing interest in the /_/J ph@B, /©/\(_7 70
stereoselective synthesis of substituted tetrahydrofurans, and a / Ph

OH
number of different methods have been devised for their prepara- OO o) %
tion.2 However, only three methods allow for ring closure with / Br

concomitant formation of both a new stereogenic center and a new OO 0

C—C bond at the C1position3 These methods tend to exhibit only 3 CO 60
modest (ca. +3:1) stereoselectivity for the preparation of 2,3- and Br o
2,5-disubstituted tetrahydrofurans and are limited to a narrow range 4 ph B Phw 81°

of substrates. Herein we describe a new, stereoselective method OH N O. _Ph
for the synthesis of substituted tetrahydrofurans frpihydroxy 5 /__/__<F,h 5 (_7’ (>2gf1) &
alkenes that forms both a-€C and a G-O bond and up to two / ’

S o , O~ ~Ph
new stereocenters; extremely high diastereoselectivitié8:(l) are 6 Me0~©—8r /©/ g 62
MeO

observed for the formation of 2,5- and 2,3-disubstituted tetrahy-
drofurans. We also report our initial studies on the mechanism of Ph_OH D\ Meo@/ﬁz

this transformation, whi_ch suggest the rea_ctipn proceeds via an 7 /—)_/ MeO Br (2:?4(, 9
unusual intramolecular insertion of an olefin into a Pd(Ar)(OR)

e
intermediate. 8 Me/< >—Br ©/ > / 51
i i //_(_J Me H (18:1dr)

During the course of our studies on late transition metal-mediated
sp? carbon-heteroatom bond-forming reactions we became inter- QH Br PN Ho
ested in the possibility of capturing the organopalladium intermedi- _M /©/ 78
; - . . 4 Ph (5:1dr)
ate generated in a Heck reaction with a heteroatom nucledpfiile.

For example, reaction of a-hydroxy alkene 1) with an ArPdX 10 P X Br th/Y@( 5504
species in the presence of a base could afford organopalladium OH 5 H (5:1dn
intermediate2, which could undergo reductive elimination to 1 : J MeO Br Meo©...w 69°

provide a substituted tetrahydrofuran with the generation of two 6 7 y (>20:1dr)

stereocenters and two bonds (Scheme 1).

aConditions: 1.0 equiv alcohol, 2.0 equiv ArBr, 2.0 equiv NBO, 1

Scheme 1 mol % Pd(dba), 2 mol % DPE-Phos, THE (0.25 M), 6%, 2 h.b Yields
LPd represent average isolated yields for two or more experimefitss

Re oH.__X R Pd-Q 1'3 o material contained ca. 5% of a regioisomeric prodédthe reaction was
SN " pase. "’A}_(_) o A}_2<_75 conducted with 4 mol % Rftol)z as ligand in toluene solvent at 12C.
1 ) - € The reaction was conducted with 2.5 mol %, fitha)/10 mol % P6-

tol)z in toluene at 110C for 48 h.
Larock has previously demonstrated that Pd-catalyzed reactions
of aryl halides with 4-penten-1-ol typically afford aldehyde and/or Use of DPE-Phds as ligand increased the yield of this transforma-
alcohol products resulting from Heck-insertigtydride elimina- tion, and when an excess of the aryl bromide and base (2.0 equiv
tion processe%? However, we felt that the formation of tetrahy- each) were employed, the desired product was obtained in 76%
drofurans could be achieved with a judicious choice of palladium isolated yield?
catalyst. Our initial experiments focused on the reaction of 4-penten-  As shown in Table 1, a variety of primary, secondary, and tertiary
1-ol (3) with 2-bromonaphthalene (eq 1). We found that small y-hydroxy alkenes react with electron-rich and -neutral aryl
bromides to provide tetrayhdrofuran products in good yield; vinyl

Br 1 mol % Pdy(dba)s bromides may also be employed as coupling partners (Table 1,
O 2 mol % DPE-Phos 0 ™) entries 4 and 10%® The main side products observed in these
/_/_/ O zg?éB“z g HF reactions are dehalogenated arenes along with aldehydes/ketones
76% resulting from oxidation of the alcohol substrates. Only trace

amounts of arylated “Heck-type” products were formed.
amounts (ca. 20%) of the desired tetrahydrofuran were formed in ~ Substitutedy-hydroxy alkenes undergo cyclization with good
the presence of catalytic Rdba)/P(o-tol); with NaOtBu as basé? to excellent levels of diastereoselectivityans-2,5-Disubstituted
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Scheme 2. Possible Mechanistic Pathways
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andtrans-2,3-disubstituted products are obtained from the corre-
sponding 1- and 3-substituted alcohols, respectively; 118:1 dr
(Table 1, entries 5, 6, 8).1°> Reaction of a 2-substituted alcohol
substrate proceeded with modest (2:1) stereoselectivity, affording
the correspondingis-2,4-disubstituted product (entry ¥ Tet-
rahydrofurans withanti-1',2-stereochemistry (entries-40) were
obtained in reactions dfans-disubstituted olefir.1415Reaction

of cyclic olefin 6 afforded bicyclic produc? with >20:1 diaste-
reoselectivity (entry 11).

The stereochemical outcome of these reactions can be used to

analyze possible mechanisms of this transformation. The high
regoioselectivity of these reactions coupled with the high diaste-
reoselectivity observed in the formation tons-2,5-disubstituted
products suggests that the initial step of this processsiot
intermolecular carbopalladationit is unlikely that high 1,4-
asymmetric induction would be achieved without chelation/direction

by the substrate. Furthermore, previously described Heck arylations ®) E

of 3 afford mixtures (ca. 5:1) of regioisomeric produgtshereas
our reactions typically afforé-95:5 regioselectivity.

Three other mechanisms could potentially account for the
formation of tetrahydrofuran products under these conditions

(Scheme 2). The elegant studies of Semmelhack have shown that ®)

Pd(Il)-catalyzed carbonylations gfhydroxy alkenes proceed via
Wacker-typetrans-hydroxypalladation of a Pd(lHolefin com-
plex3&¢4-6 The related reaction of a Pd(Ar)(Xplefin complex
bearing a tethered alkoxid&)(could potentially afford 2-benzyl-
substituted tetrahydrofurans (Path A). However, this pathway would
providesynl',2-disubstituted products frotmans-olefin substrate

4 rather than thanti-1',2-disubstituted products that are observed.

Thus, this mechanism can be ruled out on the basis of product

stereochemistrif

The remaining two mechanistic pathways would both provide
products with the observeahti-1',2-stereochemistry. Reaction of
alcohol4 with NaOtBu and a Pd(Ar)Br complex would lead to the
formation of a Pd(Ar)(OR) intermediate9);'"'® which could
undergo insertion of the olefin into the P® bond® (Scheme 2,
Path B) followed by G-C bond-forming reductive eliminatiofd.
Alternatively,9 could undergo insertion of the olefin into theP@
bond followed by sp C—O bond-forming reductive elimination
(Path CY! In both mechanisms the high 2,5- and 2,3-diastereose-
lectivites would arise from the substrate reacting through an
organized, cyclic transition state in which the substitutents are

In conclusion, we have developed a new, stereoselective,
palladium-catalyzed synthesis of substituted tetrahydrofurans from
y-hydroxy alkenes. In contrast to related Pd(ll)-catalyzed alkoxy-
carbonylation reaction®, ¢4~ these new reactiordo not proceed
through a Wacker-type mechanisFurther studies on the scope,
limitations, applications, and mechanism of these reactions are
currently underway.
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